

This progressive calculation policy has been devised to meet the requirements of the National Curriculum, for the teaching and learning of mathematics. It is designed to give pupils a consistent and smooth progression of learning calculation across the school, beginning with concrete experiences and developing through to mental jottings, mental strategies and on to written methods. The policy aims to develop fluent mathematicians in mental and written methods of calculation, with an understanding of the underlying mathematical concepts.

The policy builds progressively on from the content and methods established in the Early Years Foundation Stage, who follow the 'Development Matters' EYFS document. It is based on a mastery approach – that mathematical knowledge and understanding is incremental and thus it is essential to "master" each step otherwise gaps in learning will compromise future success.

We enable children to make cognitive connections to be effective learners of mathematics through interweaving the following:

- the use of concrete resources (representations) to support conceptual understanding or pictures and images to support mental imagery
- the language that will be modelled and used
- the symbols that will be used
- real-life contexts which are meaningful and will support understanding and provide opportunities to use and apply

- problem solving approaches which will help children to recognise when to use certain operations and methods when faced with problems

The Connections Model:

Context/ Concrete Experience

It is important to distinguish between children knowing facts and children using methods to get to an answer, using the facts they know.

'Knowledge-led curriculum' with three forms of knowledge:

- O Factual: I know *that* ...
- O Procedural: I know *how* ...
- O Conceptual: I know *why* ...

Progression examples

The calculation policy includes a range of concrete and pictorial representations, more of which are featured in the scheme, along with the abstract. Question type examples are given that are **varied** and support conceptual understanding.

Year 1	<u>Year 2</u>	<u>Year 3</u>	<u>Year 4</u>	<u>Year 5</u>	<u>Year 6</u>
represent and use number	recall and use addition and	add and subtract numbers	add and subtract numbers	add and subtract	perform mental
bonds and related	subtraction facts to 20	mentally, including:	mentally with up to 4 digits	numbers mentally with	calculations, including
subtraction facts within 20	fluently, and derive and use	<u>a three-digit number and</u>		increasingly large	with mixed operations,
	related facts up to 100	<u>ones</u>	= 6,000 - 900	numbers and decimals	large numbers and
3 + 7 =		273 + 5	5873 + 90 =		decimals.
14 + 6 =	30 + 70 =		7382 + 300	2800 + 7200	
10 - 8 =	100 - 10 =	<u>a three-digit number and</u>	8000 + 1834	500,000 - 5,000	1,999,999 + 350,750
20 – 11 =	5 40	tens (70,000	= 8,275 + 82	10,000 – 5,400	3,000,000 - 250,000
	Base 10	672 + 30		144,444 + 345,666	5.87 + 3.123 =
Within 10		100 – 21	Mental partitioning		
			(648) - (135)	Pictorial	Compensation
6+4-10		<u>a three-digit number and</u>		e.g. 314,523 + 30,000	5.3 + 3.98 = 9.28
4+6=10		<u>nunareas</u>			- 0.02 + 0.02
10 - 4 = 6 10 - 6 = 4		442 + 500			528 + 40 = 928
	Abacus/ rekenrek	Stratogios		100,000 1,000 100 1	
	Multiple of 10	- Use known facts	+ 200 + 200	1,000 100	5.3 + 3.98 = 9.28 ♦
Tens Frame				100	
		24 2	3,825 4,025 4,225	adding a whole	- 0.3
6 + 4 = 10		2.4 :	(400)	4.32 + 4	5.0 + 4.28 = 9.28
10 $4+6=1010-4=6$		- Partition			
10-6=4		- Count on for	200 200	subtracting a whole	Part-whole
		subtraction		9.87 – 3	(1,100)
	Number bond to 100	203 - 198			\sim
Part Whole Model		+2 +3		<u>using known fact</u> s	500 600
10		198 7 200 7 203		1.2 + 0.8	
6 4		- Count back			(1,100 thousand)
				subtracting from a whole	\sim
6 + 4 = 10 4 + 6 = 10		176 177 178 179 180 181 182 183		9 - 1.9	
10 - 4 = 6 10 - 6 = 4		- Bridge through a		8 - 6./1	
10-0-4		multiple of 10		Development	(1,100,000)
Bar Model				<u>Reordering</u>	\sim
				000 + 240 + 300	(500,000)
Within 20				1.7 + 2.0 + 0.5	

	100 square 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 28 28 28 28 27 28 29 00 31 32 33 46 35 56 37 38 99 40 41 42 43 44 46 66 47 46 47 44 9 50 51 52 53 56 55 56 57 58 59 40 61 62 63 46 65 66 77 68 99 40 91 92 93 46 95 66 77 98 99 100	$\begin{array}{c} -30 & -20 \\ \hline 900 & 920 \\ \hline 900 & 920$		$58 + 47 - 38$ Compensation $27 + 18 = 45$ $-2 \downarrow + 2 \downarrow + 2$ $25 + 20 = 45$ $199,999 + 345,222 = 200,000 + 345,221$ $199,999 + 345,222 = 545,221$ $199,999 + 345,222 = 545,221$	Bridging Number line: +1 29,999 30,000 Bar model: 40,000 29,999 10,001 19,995 + 5 273
add and subtract one-digit	add and subtract numbers	add and subtract numbers	add and subtract numbers	add and subtract whole	add and subtract whole
and two-digit numbers to	using concrete objects,	with up to three digits,	with up to 4 digits using the	numbers with more than	numbers and decimals
20, including zero	pictorial representations,	using formal written	formal written methods of	4 digits, and with	using formal written
	and mentally.	methods of columnar	columnar addition and	decimals including using	methods (columnar
3 + 5 =		addition and subtraction	subtraction	formal written methods	addition and
12 + 4 =	<u>a two-digit number and</u>	04 . 267	7.0(4 502	9(4,007, , (,000	subtraction)
14 + 0 =	ones 2 · · · · 7	Y4 + 207	7,004 - 502	= 804,027 + 6,432	
Y - 0 =	2 + 0/ =		0,135 + 501 + 649 =	502,973 + 570,195	1,023,303 + 0,832,589
17 - 5 =	= 40 + 4	/JZ - Y/ 501 - 294	5001 - 834	750,500 - 13,847 =	
Partitioning	= 34 - 0	= 321 - 300	7,500 - 1,047 =	Os in the minuerd	27,343 + 44.320
	bridge 100s when adding	Concrete/ nictorial	in the minuerd)	os in the minuena)	10,002 - 47.304
	and subtracting	Concrete/ pictorial		56 38 1 24 7 -	
Bar model			Concrete addition	-7 - 725	
5 3 2	Hundred square grid			8 - 5.123 =	

5 0 5, 3 7 0

1, 1 4 9, 1 7 1

000

8

1 %

0

1 3

Bar models							
114,128							
55,047 ?							
		55,09	17		•		
			11	4,128			
				?			
		£5	8.51			£27.92	
Pi	icto	rial	colu	ımn	met	hod	
	5		3	100 100 100 100 4	2	1	
		4	1	3	0	8	
				ļ			
	5	6 000 000 000 000 000 000 000 000 000 0	• • • 3	100 800 100 800 4	1 %	0000 0000 000	
_		4	1	3	0	8	
	5	1000 0000	2	¹⁰⁰ ,	1	111 3	

		estimate the answer to a calculation and use inverse operations to check answers	estimate and use inverse operations to check answers to a calculation	use rounding to check answers to answers to a calculation	$6 + 4 \div 2 =$ 62 + 10 = $60 \div (30 - 24) =$ $92 - 36 \div 9 =$ use rounding to check answers to answers to a calculation
count in multiples of twos, fives and tens 2, 4,, 8, 10, Count from 0 in 5s to 50. Count back in 10s from 50. Numicon $\frac{1}{2}$ four six $\frac{1}{6}$ Skip counting on a number line 0 1 2 3 4 5 6 7 8 9 1011 121314 15 16 17 18	recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables $2 \times 7 =$ $= 10 \times 5$ 5 $\times 6 =$ $24 \div 2 =$ $15 \div 5 =$ $60 \div 5 =$ $100 \div 10 =$ Concrete $\bigcirc \bigcirc $	recall and use multiplication and division facts for the 4, 8 and 3. multiplication tables including missing numbers $4 \times 6 =$ $= 3 \times 8$ $32 \div 4 =$ <u>Concrete</u> <u>Pictorial</u> <u>Pictorial</u> <u>Patterns on a 100 square</u> or multiplication grid <u>1 2 3 4 5 6 7 7 8 9 10</u> <u>Patterns on a 100 square</u> or multiplication grid <u>1 2 3 4 5 6 7 7 8 9 10</u> <u>1 2 3 4 5 6 7 7 8 9 10</u> <u>1 2 3 4 5 6 7 7 8 9 10</u> <u>1 2 3 5 5 6 7 8 8 9 100</u> <u>1 2 3 5 5 6 7 8 8 9 100</u> <u>1 2 3 5 5 6 7 8 8 9 100</u> <u>1 2 3 5 5 6 7 8 8 9 100</u> <u>1 2 3 5 6 6 7 7 8 9 100</u> <u>1 2 3 5 6 6 7 7 8 9 100</u> <u>1 2 3 5 6 6 7 7 8 9 100</u> <u>1 2 3 5 6 6 7 7 8 9 100</u> <u>1 2 3 5 6 6 7 7 8 9 100</u> <u>1 2 3 5 6 6 7 7 8 9 100</u> <u>1 2 3 5 6 6 7 7 8 9 100</u> <u>1 2 3 8 4 4 6 6 6 6 6 6 6 6 6 6 6 6 7 8 6 9 7 000000000000000000000000000000000</u>	recall multiplication and division facts for multiplication tables up to 12×12 , including missing numbers = 9 x 6 99 ÷ 11 = x 7 = 42 108 ÷ = 12 Concrete Bar models 9 9 9 9 9 9 9 9	multiply and divide numbers mentally drawing upon known facts $2,400 \div 2 =$ $= 240 \div 8$ $1,080 \div 9 =$ Pictorial e.g. 3000 x 8 $\bigcirc \bigcirc $	perform mental calculations, including with mixed operations and large numbers $32 \div 0.8 = 40$ $0.32 \div 0.8 = 0.4$ $2,4000 \div 20 =$ $90 \div _ = 4.5$ $_ = 4.5 \times 20$ $_ = 4.5 \times 2$ 37.184×2 $24.638 \div 2$

-100 cm		× 0 1 2 3 4			
- 90 cm		0 0 0 0 0 0			
		1 0 1 2 3 4			
- 70 cm		2 0 2 4 6 8 1			
- 60 cm		3 0 3 6 12 1			
50 cm		4 0 4 8 12 16 2		4 × 7 = 28 4 × 0.7 = 2.8	
- 40 cm		5 0 5 10 15 20 2		$4 \times 7 \text{ ones} = 28 \text{ ones}$ $4 \times 7 \text{ tenths} = 28 \text{ tenths}$	
30 cm					
20 cm		4 4 4			
0 cm					
		· · · · · · · · · · · · · · · · · · ·			
) 4 8 12			
		Bar model			
		24			
		4 4 4 4 4			
		8 8 8			
			use place value, known and	recognise and use square	
			derived facts to multiply and	numbers and cube	
			divide mentally, including:	numbers, and the	
			multiplying by 0 and 1;	notation for squared (2)	
			dividing by 1; multiplying	and cubed (3)	
			together three numbers		
				Q2	
			$0 \times 989 =$	Δ ³	
			838 ± 1 -	'	
			$-3 \times 4 \times 6$		
			$= 3 \times 4 \times 0$		
					and the second state of the second
use multiplication and	calculate mathematical	write ana calculate	multiply two-algit and three-	multiply numbers up to 4	multiply multi-digit
aivision, by calculating the	statements for multiplication	mathematical statements	aigit numbers by a one aigit	aigits by a one- or two-	numbers up to 4 digits
answer using concrete	and division within the	for multiplication and	number using formal written	digit number using a	by a two-digit whole
objects, pictorial	multiplication tables and	division using the	layout	formal written method,	number using the formal
representations and arrays	write them using the	multiplication tables that		including long	written method of long
	multiplication (×), division	they know, including for	9 x 41 =	multiplication for two-	multiplication
Doubles to 10	(÷) and equals (=) signs	two-digit numbers times	= 596 × 7	digit numbers	
Show 3 x 2 using an array		one-digit numbers, using	÷ 7 = 67		4078 x 67
(concrete/ pictorial)	Show as repeated addition	mental and progressing to	÷ 9 = 64	607 x 83	
	and in a commutative way:	formal written methods			Area model

				12.7 × 6 = 76.2
				× 10 ÷ 10
				↓ /
				127 × 6 = 762
				127
				$\begin{pmatrix} \times & 6 \\ \hline & 7 & 6 \end{pmatrix}$
				$\begin{array}{c c} 7 & 0 & 2 \\ \hline 1 & 4 \end{array}$
				127 ones × 6 = 762 ones
				127 tenths \times 6 = 762 tenths
	write and calculate	divide numbers up to 3 digits	divide numbers up to 4	divide numbers up to 4
	mathematical statements	by a one digit number using	digits by a one-digit	digits by a two-digit
	for division using the	the formal written method of	number using the formal	whole number using the
	multiplication tables that	short division and interpret	written method of short	formal written method
	they know, including for	remainders appropriate for	division including with	of long or short division,
	two-digit numbers	the context	and without remainders	and interpret remainders
				as whole number
	52 ÷ 4 =	<u>2 digits</u>	<u>3 digits</u>	remainders, fractions or
	= 81 ÷ 3	91 ÷ 7 =	840 ÷ 5 =	2 decimal places
		= 76 ÷ 4	(no remainder)	
	Concrete/ pictorial	$86 \div 3 = (with remainder)$	587 ÷ 6 = (with	60 ÷ 15 =
	grouping		remainder)	672 ÷ 21 =
		3 digits		(factorise)
		$441 \div 9 =$	Pictorial to abstract	888 ÷ 37 =
		= 228 ÷ 6	formal method	3066 ÷ 73 =
	Bar model	$473 \div 7 = (with remainder)$	1 5	
	20			Short division
	5 5 5 5	Concrete arouning		
	5 10 15 20			$\frac{1}{2}$
			l i i i i i i i i i i i i i i i i i i i	25)7 '3 ²³ 0
	Group on a grid nictorially	Group 1 Group 2 Group 3 Group 4	ž i karalite	
		11. 11. 11. 11.	•	Long division
			1 5	29.2
		Concrete/ pictorial sharing	$4 6^{2} 1^{1} 2$	5 0
		###########/////	.,	2 3 0
				2 2 5 0
	40 79 = 10 12 + 4 = 3		<u>4 aigits</u>	5 0
			2,534 ÷ / =	0

	estimate the answer to a	estimate and use inverse	estimate and use inverse	use estimation to check
	calculation and use inverse	operations to check answers	operations to check	answers to calculations
	operations to check	to a calculation	answers to a calculation	
	answers			
	find the effect of dividing a	find the effect of dividing a	multiply and divide whole	multiply and divide
	one-digit number by 10	one- or two-digit number by	numbers and those	numbers by 10, 100
		10 and 100	involving decimals by 10,	and 1000 where the
	8 ÷ 10 =		100 and 1000	answers are up to three
	= 5 ÷ 10	48 ÷ 10 =		decimal places
		= 6 ÷ 100 =	1,010 × 10 =	
	Pictorial place value chart	95 ÷ 100 =	= 25.34 x 10	2.12 ÷ 10 =
	O.t.h		13.05 × 1,000 =	0.9 ÷ 100 =
		Pictorial place value chart	0.1 ÷ 100 =	1,010 × 1,000 =
		TO.th		
			Pictorial place value chart	Pictorial place value
	. 0.0.0.1	4 3 .	H T 0 . t	chart
				H T O . t h th 100s 10s 1s 0.01s 0.01s 0.001s
			6 4 3 .	
		0.43		
			6 4 3	
		Abstract place value chart		0.643
		T O . t h	Abstract place value chart	
		4 3 .	H T O . t h 5 0 3 .	
			5 0 3	
			5.03	

			$1\frac{3}{7}-\frac{4}{7}$	$4\frac{2}{3}+1\frac{6}{7}$
			$2 - \frac{2}{5}$	$10 - 2\frac{1}{4}$
			$3 - \frac{4}{2} - \frac{1}{2}$	
			7 7	
			$1 - ? = \frac{1}{3} - \frac{2}{9}$	
find fractions of a set of	find and	recognise, find and write	find fractions with a	find the original amount
objects or quantity and	write fractions of an	fractions of an amount	denominator of a multiple	1
recognise the equivalence of $\frac{2}{2}$ and $\frac{1}{2}$	amount: unit fractions and non-unit fractions with	$\frac{1}{6}$ of 72	of 10 or 25	$\frac{1}{6}$ of = 12
4 ⁴ 2	small denominators	$\frac{7}{-1}$ of 30	$\frac{3}{20}$ of 100	
$\frac{1}{2}$ of 6	$\frac{1}{2}$ of 36	10 9 00	5	
Concrete	₃ 0J 00	² / ₅ of 150	3 75 of 150	
	³ / ₄ of 32	$\frac{3}{2}$ of 1 000 -		
	Concrete	4 0J 1,000 -		
	$\frac{1}{2}$ of 69	Concrete/ pictorial		
		e.g. circle $\frac{3}{4}$ of the oranges		
Pictorial				
	Pictorial bar model	$\bullet \bullet \bullet \bullet \bullet$		
	24	Ļ		
1 of (0) / 1 of (0)	8 8 8			
$\frac{1}{2}$ 0 40 / $\frac{1}{2}$ 0 40				

$\frac{40}{1}$ $\frac{1}{4} \text{ of } 12$ $\frac{2}{4} \text{ of } 36$	Bar model 12 2 2 2 2 2 2 2		
		multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams $\frac{4}{5} \times 400 =$ $\frac{1}{6} \times 4 = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{4}{6} = \frac{2}{3}$ Bar model $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ Single bar $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{4}{5}$ $1\frac{3}{4} \times 10$	multiply simple pairs of proper fractions, writing the answer in its simplest form $\frac{1}{2} \times \frac{1}{4} = \frac{1}{8}$

		$2 \times 3 = 6$ $\frac{3}{4} \times 3 = \frac{9}{4} = 2\frac{1}{4}$ $6 + 2\frac{1}{4} = 8\frac{1}{4}$	
			divide proper fractions by whole numbers $\frac{1}{4} \div 2 =$
		Find percentages of amounts where they are equivalent to the fractions $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{5}$, $\frac{2}{5}$, $\frac{4}{5}$ 50% of 100 25% of 3,200 20% of 1,200	finding percentages of numbers. 2% of 3,000 80% of 115 15% of 360 Bar model
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$